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A B S T R A C T

A long tradition of research on mathematical thinking has focused
on procedural knowledge, or knowledge of how to solve problems
and enact procedures. In recent years, however, there has been a
shift toward focusing, not only on solving problems, but also on con-
ceptual knowledge. In the current work, we reviewed (1) how
conceptual knowledge is defined in the mathematical thinking lit-
erature, and (2) how conceptual knowledge is defined,
operationalized, and measured in three mathematical domains:
equivalence, cardinality, and inversion. We uncovered three general
issues. First, few investigators provide explicit definitions of con-
ceptual knowledge. Second, the definitions that are provided are
often vague or poorly operationalized. Finally, the tasks used to
measure conceptual knowledge do not always align with theoret-
ical claims about mathematical understanding. Together, these three
issues make it challenging to understand the development of con-
ceptual knowledge, its relationship to procedural knowledge, and
how it can best be taught to students. In light of these issues, we
propose a general framework that divides conceptual knowledge into
two facets: knowledge of general principles and knowledge of the
principles underlying procedures.
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Research on mathematical thinking has typically divided mathematics knowledge into two
types: procedural knowledge and conceptual knowledge (e.g., Hiebert, 1986).1 In many mathemati-
cal domains, research has focused on procedural knowledge, typically defined as knowledge of sequences
of steps or actions that can be used to solve problems (e.g., Rittle-Johnson & Siegler, 1998). In line
with this theoretical definition, the way in which procedural knowledge is measured has become rel-
atively standardized: participants solve a set of problems, and a score is calculated based on how many
correct answers they obtain or based on the specific procedures they use to arrive at those answers.
In recent years, however, the number of studies focused on procedural knowledge has been eclipsed
by a growing literature on conceptual knowledge (see Star, 2005). There has been a shift toward study-
ing, not only how people solve problems, but also their understanding of mathematical concepts, more
broadly.

This shift in research, from a focus on procedures to a focus on conceptual knowledge, mirrors a
similar trend in the mathematics education community. Mathematics curricula in the US have tradi-
tionally emphasized teaching children problem-solving procedures, with less emphasis on teaching
the conceptual basis of the skills being learned (Stigler & Hiebert, 1999). However, recent reform efforts
– as reflected, for example, in the standards from the National Council of Teachers of Mathematics
and in the Common Core State Standards – have placed comparable emphasis on students having in-
tegrated conceptual and procedural knowledge (e.g., National Council of Teachers of Mathematics, 2000;
National Governors Association Center for Best Practices & Council of Chief State School Officers, 2010).
The general consensus, in research on mathematical thinking and in mathematics education, is that
having conceptual knowledge confers benefits above and beyond having procedural skill.

The literature suggests a number of specific ways in which conceptual knowledge might prove useful.
Some of the reported benefits connect directly to procedural skills. For example, conceptual knowl-
edge has been shown to help people evaluate which procedure is appropriate in a given situation (e.g.,
Brownell, 1945; Byrnes & Wasik, 1991; Carr, Alexander, & Folds-Bennett, 1994; Garofalo & Lester, 1985;
Greeno, 1978; Schneider & Stern, 2012). Conceptual knowledge also allows for more flexible problem
solving, in that people who understand the conceptual underpinnings of a procedure are more likely
to successfully generalize it to novel problems (e.g., Baroody & Dowker, 2003; Baroody, Feil, & Johnson,
2007; Blote, Klein, & Beishuizen, 2000; National Council of Teachers of Mathematics, 2000; Rittle-Johnson,
Siegler, & Alibali, 2001). Once a problem has been solved, conceptual knowledge can also be used to
check whether the solution is reasonable (e.g., Brownell, 1945; Carr et al., 1994; Garofalo & Lester,
1985).

It has also been suggested that conceptual knowledge provides more general benefits. The Common
Core State Standards (National Governors Association Center for Best Practices and Council of Chief
State School Officers, 2010), for example, explicitly mention that teaching conceptual knowledge in
addition to procedures is a way to instill deeper and longer-lasting mathematical understanding. Thus,
there is a widely held belief that conceptual knowledge plays an important role in mathematics
learning.

Despite a clear movement in both research and educational practice toward emphasizing concep-
tual knowledge in addition to procedural knowledge, there are several obstacles standing in the way
of a comprehensive understanding of conceptual knowledge. One major hurdle for researchers is that
there does not appear to be a clear consensus in the literature as to what exactly conceptual knowl-
edge is and how best to measure it. The term “conceptual knowledge” has come to denote a wide array
of constructs, making it difficult to understand the major findings in the field, the ways in which con-
ceptual knowledge relates to procedural knowledge, and the most effective ways to utilize current
research to guide instructional practices (e.g., Baroody et al., 2007; Star, 2005). In particular, the diverse
ways in which conceptual knowledge has been defined theoretically and the diverse ways in which
it has been measured have created a wide-ranging literature in which a consistent “bigger picture” is
hard to find.

1 Some conceptualizations of mathematical knowledge include additional knowledge types (e.g., Rittle-Johnson & Koedinger,
2005) or divide knowledge into slightly different categories (e.g., Reason, 2003). The conceptual/procedural distinction, however,
remains the dominant framework in the literature.
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We believe that it is important to identify and adequately measure conceptual knowledge, as dis-
tinct from procedural knowledge – even though the “wilderness that the procedural/ conceptual
distinction has created” (as one reviewer of an early version of this paper termed it) appears both dense
and tangled. Taming this “wilderness” could have both practical and theoretical benefits. In practical
terms, educators sometimes wish to assess whether students have appropriate conceptual knowl-
edge, or whether different instructional practices lead learners to acquire or construct appropriate
conceptual knowledge. For such purposes, tools that measure conceptual knowledge with high va-
lidity and reliability are needed.

From a theoretical perspective, understanding knowledge change is at the heart of understanding
learning, development, and instruction. Any complete, mechanistic account of mathematics learning
should be able to specify the nature of the knowledge that people activate and apply in mathemat-
ical reasoning, and how aspects of that knowledge change over time and with experience. Of course,
it may be difficult to distinguish conceptual from procedural knowledge at some points in develop-
ment, because the two forms of knowledge are deeply intertwined (see, e.g., Baroody et al., 2007).
Nevertheless, it seems likely that, at certain points in development, people may have only one form
of knowledge or the other, or they may apply only one form of knowledge, for example, when inter-
preting mathematical situations or solving problems. Conceptual and procedural knowledge may also
develop along different paths in different circumstances (e.g., with different sorts of mathematical ex-
perience). Such phenomena are important for theories of cognitive development and learning to
acknowledge and to explain. A deeper understanding of conceptual knowledge will be of value for
researchers espousing a range of theoretical perspectives who are interested in mathematical think-
ing, learning, and instruction.

The current review: overview

To investigate these issues, we conducted a literature review characterizing the state of research
on conceptual knowledge of mathematics. This work incorporates both (1) a general survey of the psy-
chological literature on mathematical thinking, and (2) focused reviews of specific mathematical domains.
We sought to identify how the term “conceptual knowledge” is used in the mathematical thinking
literature, both in general, and by examining research in three mathematical domains: equivalence,
cardinality, and inversion. Each of these domains has generated a substantial amount of research, much
of which has focused on characterizing and measuring conceptual knowledge.

Note that the purpose of the general review was to identify definitions of conceptual knowledge
in the literature “at large.” Because of the wide range of content domains covered in the general review,
it was not practical to also consider how conceptual knowledge was operationalized and measured
in the general review; however, this was a central aim of the domain-specific reviews. For each of the
three target domains, we consider not only the definitions of conceptual knowledge that researchers
offer, but also how researchers measure conceptual knowledge, and how these measurement ap-
proaches align with the provided definitions.

General mathematics literature

For the general review, we performed a search in PsycINFO using the terms “concept*” and “math*”
to identify a preliminary set of sources (n = 14,897).2 From this set, we excluded sources using an initial
set of broad criteria. Specifically, we excluded unpublished dissertations, book reviews, sources whose
primary focus was a domain other than math (e.g., physics), experiments using animal subjects,
neuroimaging studies, and sources unavailable in English. This narrowed our list to 4282 possible sources.
Next we reviewed the abstracts of these sources to further narrow the search to those that focused
on conceptual knowledge in some way (n = 367), excluding sources focused only on knowledge of a
specific mathematical concept or on academic achievement in general. Our process for identifying sources
from this set to include for the general review and the domain specific reviews is depicted in Fig. 1.

2 Search current as of 9:30 am, March 21, 2014.
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Within this set, those that focused on the topics of our domain specific reviews (i.e., equivalence, car-
dinality, and inversion) were set aside for those reviews (n = 102), so that there would not be overlap
between the general review and the domain specific reviews. We then read each of the remaining
general sources (n = 265) and identified those that explicitly defined conceptual knowledge. In this
way, we generated a sample of 74 sources (articles, chapters, or books) for the general review. These
sources spanned a range of topics, from general conceptual knowledge to knowledge in specific domains
(e.g., proportional reasoning, decimals, and so forth).

For each source, we identified all given definitions of conceptual knowledge, allowing us to assess
the types of definitions provided and the frequency with which different definition types occurred.
We also noted instances in which specific definitions were cited from other sources, so that we could
evaluate the frequency of unique definitions and determine which definitions were most frequently
cited or influential. In doing so, we identified a small number of sources (n = 11) that were cited by
other authors as the basis for their definitions of conceptual knowledge, but that did not appear in
our original PsycINFO search. We added these sources to the sample for the general review, yielding
a final sample of 85 sources. The definition types identified in the general review were later used to
categorize definitions in the subsequent domain-specific reviews.

Fig. 1. The selection process for sources in the general literature review.
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Definitions of conceptual knowledge

This general literature review revealed six main types of definitions for conceptual knowledge: con-
nection knowledge, general principle knowledge, knowledge of principles underlying procedures, category
knowledge, symbol knowledge, and domain structure knowledge (see Tables 1 and 2). Some defini-
tions fell into multiple categories and were coded as such. For example, “implicit or explicit understanding
of the principles that govern a domain and of the interrelations between pieces of knowledge in a
domain” (Rittle-Johnson & Alibali, 1999, p. 175) was considered both a general principle knowledge
definition and a connections definition. Definitions varied in specificity and in the extent to which
they distinguished conceptual and procedural knowledge.

Connection knowledge
The most common definition type, found in 65% (n = 55) of the sources, characterized conceptual

knowledge as understanding of relationships and connections within a domain. The pieces being linked
by these relationships varied across definitions, with some focusing on connections among ideas (e.g.,
Hiebert & Lefevre, 1986) and others on connections among things like symbols and numbers (e.g., Dixon
& Moore, 1996).

General principle knowledge
Fifty-six percent (n = 48) of the sources defined conceptual knowledge as understanding of the prin-

ciples that govern a domain. Some of these definitions noted that such knowledge is typically abstract,
or that principle knowledge does not have to be verbalizable (e.g., Rittle-Johnson & Alibali, 1999; see
below for discussion).

Knowledge of principles underlying procedures
Twenty-eight percent (n = 24) of the sources defined conceptual knowledge as understanding the

basis for procedures, or knowing why a procedure works. Within this set, some articles discussed un-
derstanding the conceptual basis for entire procedures (e.g., Bolden & Newton, 2008), whereas others
focused on knowing the rationale for individual steps within a procedure (e.g., Baroody et al., 2007).

Category knowledge
Definitions that focused on conceptual knowledge as category knowledge were found in 4% (n = 3)

of the sources. These definitions noted that conceptual knowledge guides the formation of catego-
ries that can be used to organize knowledge within a domain. These definitions align more closely

Table 1
Summary of conceptual knowledge definition types.

Definition type Explanation Example

Connection Knowledge Relationships within a
domain

“…knowledge that is rich in relationships. It can be thought of
as a connected web of knowledge, a network in which the
linking relationships are as prominent as the discrete pieces of
information.” (Hiebert & Lefevre, 1986, pp. 3–4)

General Principle
Knowledge

General rules, facts,
and definitions

“…static knowledge about facts, concepts, and principles that
apply within a certain domain.” (de Jong & Ferguson-Hessler,
1996, p. 107)

Knowledge of
Principles Underlying
Procedures

The basis for
procedures

“…conceptual underpinning of the subject specific
procedures” (Pardhan & Mohammad, 2005, p. 7)

Category Knowledge The categories that
organize information

“Subtypes of concepts include taxonomic categories…”
(Byrnes, 1992, p. 236)

Symbol Knowledge Symbol meanings “…conceptual knowledge can be defined as the awareness of
what mathematical symbols mean…” (Ploger & Hecht, 2009, p.
268)

Domain Structure
Knowledge

The organization of
mathematics

“…understanding of the underlying structures of
mathematics” (Robinson & Dube, 2009a, p. 193)
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with general psychological research on concepts and categories (e.g., Medin, 1989; Rogers & McClelland,
2005) than with the bulk of the research on conceptual knowledge in mathematics.

Symbol knowledge
Definitions that focused on the importance of understanding and attaching meaning to mathe-

matical symbols were found in 2% (n = 2) of the sources. Ploger and Hecht (2009), for example, stated
that “conceptual knowledge can be defined as the awareness of what mathematical symbols mean…”
(p. 268).

Domain structure knowledge
Definitions that focused on understanding the structure of mathematics as a whole or of a par-

ticular domain within mathematics were offered in 2% (n = 2) of the sources. For example, Richland,
Stigler, and Holyoak (2012) defined conceptual knowledge as “attainment of an expertlike fluency with
the conceptual structure of a domain” (p. 190).

Recurring definitions

There were two definitions that were cited frequently (i.e., more than five times) throughout the
general review. Hiebert and Lefevre’s (1986) assertion that conceptual knowledge “can be thought of
as a connected web of knowledge, a network in which the linking relationships are as prominent as
the discrete pieces of information” (pp. 3–4), was cited by 16 other articles. Additionally, Kilpatrick,
Swafford, and Findell’s (2001) definition of conceptual knowledge as “comprehension of mathemat-
ical concepts, operations, and relations” (p. 5) was cited in six articles.

Forms of conceptual knowledge

In addition to defining conceptual knowledge, several of the reviewed sources also discussed the
ways in which such knowledge could be known or expressed. Most of these sources considered the
question of whether conceptual knowledge must be explicit and verbalizable, or whether it can exist
in more implicit forms. Although not all sources discussed this issue, of those that did (n = 14), the
majority (n = 12) suggested that conceptual knowledge can be either explicit or implicit. For example,
Hatano and Inagaki (1986) noted the existence of both “implicit and explicit forms of understand-
ing” (p. 263).

Some literature suggests that there is a shift over time or development from more implicit knowl-
edge to more explicit knowledge (e.g., Siegler & Stern, 1998). There may be change over time in the
depth or amount of conceptual knowledge that learners possess, with implicit knowledge as a less
advanced precursor to more explicit knowledge. In line with this view, a number of studies suggest
that tasks requiring explicit verbalization may underestimate conceptual knowledge, as participants
may have some conceptual knowledge that is not sufficiently advanced for them to be able to put it
into words (e.g., Greeno, 1993). On the other hand, some of the evidence suggesting a shift from im-
plicit to explicit forms of conceptual knowledge may be an artifact of the tasks used with different
age groups. Young children, for example, often have difficulty on the more “explicit” knowledge tasks
commonly used with older participants, but much of this difficulty may have to do with task demands
(e.g., language skills) that are separate from knowledge of the mathematical concept itself. Broadly
speaking, however, the consensus in the current literature is that conceptual knowledge can be either
implicit or explicit.

Summary

This general review reveals that conceptual knowledge is defined in a range of ways in research
on mathematical thinking. One point of agreement, however, is that conceptual knowledge can exist
either in an explicit, verbalizable form or in a more implicit form. Next, we turned to detailed reviews
of studies of conceptual knowledge in the three specific domains of equivalence, cardinality, and in-

349N.M. Crooks, M.W. Alibali/Developmental Review 34 (2014) 344–377



version. These reviews allowed us to explore possible differences within and across domains in how
researchers define and measure conceptual knowledge.

Domain specific reviews

At the outset of this study, we selected three domains – equivalence, cardinality, and inversion –
for more targeted investigations of how researchers define, operationalize, and measure conceptual
knowledge. We chose these domains because there is extensive work on conceptual knowledge in each.
Note that sources on topics in these three domains were not included in the general review, de-
scribed above.

For the domain-specific reviews, we identified sources using three methods. First, we used the list
of sources on conceptual knowledge in each domain that had been gathered in the larger literature
review (n = 102). Second, we included sources that were cited by other authors within the domain as
the basis for their definitions of conceptual knowledge, but that did not appear in the original search;
this method added one source for the cardinality review. Third, for the domains of equivalence and
inversion, we screened the sources cited in previous literature reviews (McNeil, 2014, for equiva-
lence; Prather & Alibali, 2009, for inversion) to identify additional, potentially relevant sources.

These potential sources were then screened for whether they included explicit discussion of con-
ceptual knowledge or measures of conceptual knowledge. The final set included 41 sources about
equivalence, 31 sources about cardinality, and 32 sources about inversion (see Fig. 2).

For each source, we coded all definitions of conceptual knowledge in terms of the categories iden-
tified in the general review. Next, we examined the range of tasks used to assess conceptual knowledge
in each domain.3 Finally, we evaluated the alignment between definitions and tasks within each domain.

Equivalence

Mathematical equivalence is the idea that the two sides of an equation represent the same quan-
tity. Procedural understanding of equivalence is typically measured by having participants solve
equivalence problems, which are equations that have operands on both sides (e.g., 3 + 4 + 5 = 3 + __).
Elementary school students in the US generally perform poorly on equivalence problems (e.g., McNeil,
2007), with some studies showing up to 86% of elementary school students failing to solve such prob-
lems correctly (Alibali, 1999). Because students often have the prerequisite arithmetic skills necessary
to solve such problems, much of the research on equivalence has focused on deficits in conceptual
knowledge as a possible explanation for their poor performance. Understanding mathematical equiv-
alence is foundational for more advanced mathematics, particularly algebra (e.g., Knuth, Alibali, McNeil,
Weinberg, & Stephens, 2005).

Defining conceptual knowledge

Only about one-quarter of the equivalence sources (n = 11) provided an explicit definition of the
term “conceptual knowledge” (see Table 2). Among the studies that did include explicit definitions,
four of the previously identified definition types were found: connection knowledge (73% of the given
definitions), general principle knowledge (73%), category knowledge (9%), and symbol knowledge (9%).
Note that definitions could fall into multiple categories.

Measuring conceptual knowledge

Twelve different tasks were used to measure various aspects of conceptual knowledge of equiva-
lence. The tasks differ, not only in the specific mathematical concept of interest, but also in the form

3 There is disagreement about whether using specific tasks to assess conceptual knowledge is appropriate (e.g., Faulkenberry,
2013) and also about whether conceptual knowledge can be measured separately from procedural knowledge. For the review
portion of this paper, however, we focused on the authors’ labeling of the tasks as measuring conceptual knowledge or not.
We discuss this general issue in the final section of the paper.
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Fig. 2. The selection process for sources in the domain specific reviews.
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Table 2
Conceptual knowledge definitions by type and domain.

Definition type General Equivalence Cardinality Inversion

Connection
Knowledge

Alibali (2005)
Ashlock (2001)
Bisanz and LeFevre (1990)
Blote et al. (2000)
Bosse, Ries, and Chandler (2013)
Burns (2011)
Byrnes (1992)
Byrnes and Wasik (1991)
Capraro and Joffrion (2006)
Carpenter (1986)
Culatta (1993)
Dixon and Moore (1996)
Eisenhart, Borko, Underhill, and Brown
(1993)
English (1997)
Gau Bartell, Webel, Bowen, and Dyson
(2013)
Goldman and Hasselbring (1997)
Gutstein and Romberg (1995)
Hallett, Nunes, and Bryant (2010)
Hallett, Nunes, Bryant, and Thorpe
(2012)
Hiebert and Carpenter (1992)
Hiebert and Lefevre (1986)
Hiebert and Wearne (1986)
Jitendra, DiPipi, and Perron-Jones
(2002)
Kadijevich and Haapasalo (2001)
Kajander (2010)
Kieren (1993)
Kilpatrick et al. (2001)
Kolloffel, Eysink, and de Jong (2011)
Lachance and Confrey (2002)
Lobato, Clarke, and Ellis (2005)
Mabbot and Bisanz (2003)
Mabbot and Bisanz (2008)
Malloy (2009)
Mann (2006)
McCormick (1997)
Middleton and Goepfert (1996)
Miller and Hudson (2007)
Mullins, Rummel, and Spada (2011)
Ohlsson and Rees (1991)
Ploger and Hecht (2009)
Rittle-Johnson and Koedinger (2005)
Rittle-Johnson and Siegler (1998)
Rittle-Johnson and Star (2007)
Rittle-Johnson and Star (2009)
Rittle-Johnson et al. (2001)
Rittle-Johnson, Star, and Durkin (2009)
Rittle-Johnson, Star, and Durkin (2012)
Saxe, Gearhart, and Suad Nasir (2001)
Schneider and Stern (2010)
Simon (1993)
Simon (2006)
Stump (2001)
Tennyson and Cocchiarella (1986)
Thanheiser (2012)
Zell (2011)

Hattikudur and
Alibali (2010)
Matthews and
Rittle-Johnson
(2009)
McEldoon, Durkin,
and Rittle-Johnson
(2013)
McNeil and Alibali
(2005a)
Rittle-Johnson
(2006)
Rittle-Johnson and
Alibali (1999)
Saenz-Ludlow and
Walgamuth (1998)
Steinberg et al.
(1991)

NA Baroody, Lai, Li,
and Baroody
(2009); Baroody,
Torbeyns, and
Verschaffel (2009)
Canobi (2005)
Schneider and
Stern (2009)

(continued on next page)

352 N.M. Crooks, M.W. Alibali/Developmental Review 34 (2014) 344–377



Table 2 (continued)

Definition type General Equivalence Cardinality Inversion

General
Principle
Knowledge

Alibali (2005)
Baroody et al. (2007)
Baroody, Wilkins, and Tiilikainen
(2003)
Berthold and Renkl (2009)
Bisanz and LeFevre (1990)
Burns (2011)
Byrnes (1992)
Byrnes and Wasik (1991)
de Jong and Ferguson-Hessler (1996)
Dixon and Moore (1996)
English (1997)
Faulkenberry (2013)
Gau Bartell et al. (2013)
Greeno (1993)
Gutstein and Romberg (1995)
Hecht and Vagi (2012)
Hiebert and Wearne (1986)
Jitendra et al. (2002)
Kadijevich and Haapasalo (2001)
Kaufmann, Handl, and Thony (2003)
Kieran and Guzman (2006)
Kilpatrick et al. (2001)
Kolloffel et al. (2011)
Lampert (1986)
Lobato et al. (2005)
Mabbot and Bisanz (2003)
Mabbot and Bisanz (2008)
Malloy (2009)
Mullins et al. (2011)
Niemi (1996)
Ohlsson and Rees (1991)
Patel and Canobi (2010)
Peled and Segalis (2005)
Rittle-Johnson and Koedinger (2005)
Rittle-Johnson and Koedinger (2009)
Rittle-Johnson and Siegler (1998)
Rittle-Johnson and Star (2007)
Rittle-Johnson and Star (2009)
Rittle-Johnson et al. (2001)
Rittle-Johnson et al. (2009)
Rittle-Johnson et al. (2012)
Schneider and Stern (2010)
Schneider et al. (2011)
Simon (1993)
Simon (2006)
Squire, Davies, and Bryant (2004)
Stump (2001)
Thanheiser (2012)
Zell (2011)

De Cortre and
Verschaffel (1981)
DeCaro and
Rittle-Johnson
(2012)
Fyfe,
Rittle-Johnson, and
DeCaro (2012)
Hattikudur and
Alibali (2010)
Matthews and
Rittle-Johnson
(2009)
McEldoon et al.
(2013)
Rittle-Johnson
(2006)
Rittle-Johnson and
Alibali (1999)

Ferrara and Turner
(1993)
Frye, Braisby, Lowe,
Maroudas, and
Nicholls (1989)
Gelman and Meck
(1986)
Greeno, Riley, and
Gelman (1984)
Nye, Fluck, and
Buckley (2001)
Sarnecka and
Wright (2013)
Siegler (1991)
Sophian (1992)

Baroody and Lai
(2007)
Baroody et al.
(2009a, 2009b)
Bisanz et al. (2009)
Canobi (2009)
Robinson and
LeFevre (2012)
Stern (1992)
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of conceptual knowledge being measured (i.e., implicit vs. explicit). Of the 12 tasks employed in the
reviewed sources, some are used extensively throughout the literature, whereas others are used in-
frequently. Here we briefly describe the tasks that were used in at least 10% of the equivalence sources.

Equal sign definition
In this task, participants are asked to provide an explicit definition of the equal sign. This was the

most common conceptual task in the equivalence literature and appeared in 56% of the sources (n = 23).
Results from this task suggest that elementary and middle school students are generally poor at pro-
viding relational definitions for the equal sign (i.e., stating that the equal sign indicates that the two
sides of an equation are the same/have the same value).

Sample equation evaluation
Forty-one percent of the sources (n = 17) included a task in which participants are asked to decide

whether or not sample equations are correct or “make sense.” In these tasks, sample equations are
typically presented in some combination of the following formats: traditional (e.g., 2 + 2 = 4), non-
traditional (e.g., 4 = 2 + 2), equivalence/operations on both sides (e.g., 2 + 2 = 1 + 3), and identity (e.g.,
2 = 2). Much of the data on such tasks is qualitative data from interviews (e.g., Baroody & Ginsburg,
1983; Falkner, Levi, & Carpenter, 1999). The typical finding is that, when faced with problems that do
not follow a traditional format, many students assert that the equations are incorrect or that the ex-
perimenter must have made a mistake and needs to “fix” the equation to fit a more traditional problem
format. These observations are supported by quantitative assessments of students’ abilities to eval-

Table 2 (continued)

Definition type General Equivalence Cardinality Inversion

Knowledge of
Principles
Underlying
Procedures

Baroody et al. (2003)
Berthold and Renkl (2009)
Bolden and Newton (2008)
Bosse et al. (2013)
Burns (2011)
Eisenhart et al. (1993)
Hatano (1988)
Hatano and Inagaki (1986)
Kajander (2010)
Kieren (1993)
Kilpatrick et al. (2001)
Lampert (1986)
Le Roux (2008)
Lee (1998)
Leinhardt (1988)
Lithner and Palm (2010)
Lobato et al. (2005)
Malloy (2009)
Montague (1998)
Ohlsson and Rees (1991)
Perry, VanderStoep, and Yu (1993)
Resnick and Omanson (1987)
Rittle-Johnson and Siegler (1998)
Schmittau (2004)
Semenza (2002)

NA Briars and Siegler
(1984)
Freeman et al.
(2000)
Gelman and Meck
(1986)
Kamawar et al.
(2010)
LeFevre et al.
(2006)
Sarnecka and Carey
(2008)
Stock et al. (2009)

Baroody et al.
(2009a, 2009b)
Bisanz et al. (2009)
Gilmore (2006)
Gilmore and Bryant
(2008)

Category
Knowledge

Byrnes (1992)
Byrnes and Wasik (1991)
Miller and Hudson (2007)

DeCaro and
Rittle-Johnson
(2012)

NA NA

Symbol
Knowledge

Hecht (1998)
Lachance and Confrey (2002)
Ploger and Hecht (2009)

Saenz-Ludlow and
Walgamuth (1998)

NA NA

Domain
Structure
Knowledge

Bosse et al. (2013)
Richland et al. (2012)

NA NA Canobi (2009)
Robinson and Dube
(2009a)
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uate sample equations, which demonstrate that students often have difficulty accurately evaluating
equations with operations on both sides (e.g., Rittle-Johnson & Alibali, 1999).

Problem reconstruction
Problem reconstruction tasks were included in 31% of the sources (n = 13). In these tasks, partici-

pants view an equation for a set amount of time, and then the equation is hidden from view and they
write down exactly what they saw. Performance on these tasks is typically poor, with many students
incorrectly reproducing the structure of the target equations (e.g., McNeil, Fyfe, Petersen, Dunwiddie,
& Brletic-Shipley, 2011).

Equal sign definition ratings
In this task, participants rate given definitions of the equal sign. About one quarter of the sources

(n = 11) included a definition rating task. Participants are typically asked to rate three types of defi-
nitions: relational (e.g. “the same as”), operational (e.g., “the total”), and distractor (e.g., “the end of
the problem”). Higher ratings of relational definitions, compared with operational or distractor defi-
nitions, are taken as evidence of conceptual knowledge. Data from these tasks provide varying estimates
of students’ knowledge, although performance is typically better than for the equal sign definition task.

Equivalent equations
Equivalent equation tasks were found in 22% of the sources (n = 9). These tasks included five dif-

ferent types of problems in which participants are required to provide some information about equations.
In type 1, participants are shown two equations with variables (e.g., n + 3 = 7 and n + 3 − 5 = 7 − 5) and
asked to indicate whether the value of n is the same in both. In type 2, participants are shown two
equations with variables and asked if knowing the value of one of those variables would assist them
in solving the other equation (e.g., In the equation __ + 18 = 35, 17 goes in the blank. Can you use that
knowledge to figure out what goes in the blank in __ + 18 + 27 = 35 + 27?). In type 3, participants are
asked to explain whether transforming an equation in a specific way would maintain its value (e.g.,
does a + b = (a + 1) + (b − 1)?). In type 4, participants are asked to explain why performing the same
operation on both sides maintains the equivalence relationship in an equation. Finally, in type 5, par-
ticipants are asked to insert the number or symbol that would make two incomplete expressions
equivalent. Performance on these tasks varies widely by type, with knowledge estimates based on type
1 exceeding estimates based on the other equivalent equations tasks. Additionally, the developmen-
tal trajectory of performance differs depending on the specific type of equivalent equations task used.

Problem solving
Although almost all of the studies required participants to solve equivalence problems, in only 17%

(n = 7) of the sources was this activity characterized as conceptual in nature. In four of these sources,
participants’ solutions were used to infer conceptual knowledge, whereas in the other three, partici-
pants were required to explain their problem-solving procedures.

Other, infrequently used tasks
Six additional, specific tasks were identified in the equivalence literature, but were used in fewer

than 10% of sources. The identifying sides task, in which participants are asked to identify the two sides
of an equation, was used in three sources (Matthews & Rittle-Johnson, 2009; Rittle-Johnson & Alibali,
1999; Rittle-Johnson, Matthews, Taylor, & McEldoon, 2011). Two sources included a problem recog-
nition task in which participants view an equation for a set amount of time and then, once the equation
has been hidden, select the equation they saw from of a set of samples (Alibali, Phillips, & Fischer,
2009; McNeil & Alibali, 2005b). In four sources, participants were asked to decide whether two given
numbers were equal (number equality task; e.g., Rittle-Johnson et al., 2011). In one source partici-
pants were asked to define explicitly what it meant for two sets to be “equal” (generic equal definition;
Rittle-Johnson & Alibali, 1999). One source included a procedure assessment task, in which partici-
pants decide whether a given procedure makes sense (Rittle-Johnson & Alibali, 1999). Finally, two sources
included a symbol sort task, in which participants are presented with a set of cards depicting symbols
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– three operators (e.g., +, −), three relational symbols (e.g., <, =), and two numbers – and asked to place
the cards into three groups (Hattikudur & Alibali, 2010; Rittle-Johnson, 2006).

Linking definitions and measurement of conceptual knowledge

As demonstrated in this review, a variety of tasks have been used to assess conceptual knowledge
in the domain of equivalence. These tasks vary widely in their performance requirements and in how
outcomes are measured. For many of these tasks, however, it is unclear how they align with the broader
definitions of conceptual knowledge espoused in the equivalence literature.

Of the five types of conceptual knowledge definitions explicitly mentioned, only symbol knowl-
edge was clearly measured in a majority of sources. In 23 sources, participants were required to provide
an explicit verbal definition for a mathematical symbol (equal sign definition) and in 11, participants
were asked to rate given definitions of the symbol (equal sign definition ratings). Additionally, two sources
included a symbol sort task in which participants were asked to group a variety of mathematical symbols.
The frequency of these symbol-based tasks is notable, considering that the idea of conceptual knowl-
edge as symbol knowledge was provided in only one source about equivalence (Saenz-Ludlow &
Walgamuth, 1998). The study reported in that article did not use a task that specifically assessed symbol
knowledge, but instead analyzed qualitative data from classroom interactions, and noted a change in
students’ interpretations of the equal sign symbol over time.

The other theoretical definitions provided in the literature were less clearly tied to the measures
used in the studies of equivalence. The idea of conceptual knowledge as general principle knowledge
links clearly to only two tasks, both of which were used infrequently: the number equality task and
the generic equal definition task. The number equality task measures general principle knowledge by
having participants demonstrate that they can compare two values and decide if they are the same,
an ability that requires a general understanding of the concept of equality. The generic equal defini-
tion task requires participants to provide a general explanation of what it means for two things to be
equivalent. Although other tasks get at more specific notions of equivalence, this task is one of few
that differentiate general principle knowledge from symbol knowledge.

Although none of the equivalence sources defined conceptual knowledge as understanding prin-
ciples underlying procedures, this type of knowledge was measured in a few ways. The clearest measure
of this is the procedure assessment task, found in only one study, in which participants evaluate a pro-
cedure as making sense or not (Rittle-Johnson & Alibali, 1999). One would expect that participants
would rate procedures adhering to principles they know more highly than procedures violating those
principles. Some versions of the equivalent equations tasks could also be seen as measuring under-
standing of the conceptual basis for a procedure – specifically, these tasks measure knowledge of
problem-solving shortcuts (e.g., if the same thing is done to both sides, computation is unnecessary),
which is taken as demonstrating conceptual knowledge in other domains (discussed in more detail
below, in the Inversion section). Seven sources used data from students’ problem solving to infer con-
ceptual knowledge of this type.

The most common definition of conceptual knowledge provided in the literature on equivalence,
connection knowledge, was the least clearly measured. Although some tasks could be seen as requir-
ing participants to connect pieces of knowledge (e.g., for the equal sign definition task, participants
must connect their general understanding of equality to a specific symbol), none of the tasks directly
measure the nature or quality of these connections. Only one task, the symbol sort task, requires par-
ticipants to relate their knowledge of the equal sign to their understanding of both arithmetic operations
and relational symbols. It could be argued that this task allows one to assess whether participants
believe the equal sign to be more strongly connected to operators than to other relational symbols or
to numbers. At the same time, this task might also be viewed as tapping category knowledge, spe-
cifically knowledge that relational symbols form a category that is distinct from operation symbols.
Regardless of how the symbol sort task is construed, it was used in only two sources (Hattikudur &
Alibali, 2010; Rittle-Johnson, 2006), and in neither was it explicitly linked to either a connection knowl-
edge definition of conceptual knowledge or a category knowledge definition.

Many of the tasks had no clear ties to any given theoretical definitions. The problem reconstruc-
tion and problem recognition tasks, for example, are used to measure students’ ability to encode

356 N.M. Crooks, M.W. Alibali/Developmental Review 34 (2014) 344–377



mathematical equations without conceptual errors, even though conceptual knowledge was never defined
as the ability to accurately encode perceptual information.

Overall, despite the large variety of tasks designed to measure conceptual knowledge of equiva-
lence, it does not appear that all of the tasks have solid theoretical foundations. It is striking that the
most commonly provided definition of conceptual knowledge in the equivalence literature (connec-
tion knowledge) was the least frequently measured in any direct way, whereas the most commonly
measured aspect of conceptual knowledge (symbol knowledge) was only mentioned once as being a
defining feature of conceptual knowledge. Additionally, there were some definitions identified in the
general review that were never used in the equivalence literature, but that were nonetheless tapped
by some of the tasks. The symbol sort task, for example, requires participants to put symbols into cat-
egories, but the category knowledge definition was never explicitly provided in this domain.

Cardinality

Research on children’s ability to count has focused on knowledge of a set of “counting principles”
that govern the ways in which sets can be enumerated and the types of things that can be counted.
One of the “how to count” principles that has received a great deal of research attention is the car-
dinal principle. The cardinal principle states that, when counting a set, the numerical tag given to the
final item represents a property of the set as a whole: its total numerosity (i.e., its cardinal value) (Gelman
& Gallistel, 1978). Children’s ability to count is foundational in mathematics, and relates to their learn-
ing of later arithmetic as well as to many real-world activities (e.g., Stock, Desoete, & Roeyers, 2009).

Defining conceptual knowledge

Almost 50% of the reviewed sources on cardinality provided a definition of the term conceptual
knowledge (n = 14; see Table 2). These definitions fell into two categories: general principle knowl-
edge (57% of the given definitions) and knowledge of principles underlying procedures (50%).

Measuring conceptual knowledge

A variety of tasks have been designed to assess children’s understanding of cardinality, with most
taking advantage of children’s ability to enact or assess a counting procedure. The eight tasks iden-
tified in the current review varied in their performance requirements, with some requiring verbal
responses and others relying on action. Measures occurring in 10% or more of the reviewed sources
on cardinality are described here.

How many
Found in almost two-thirds of the sources (n = 20), how many tasks require children to count a set

and then provide the cardinal value by answering the question “how many?” The specifics of the task
vary by study, with some varying in the constraints placed on children’s counting (e.g., start count-
ing with this object), some varying in the types of items children are asked to enumerate (e.g., objects,
sounds, etc.), and some varying in set size. One issue with these measures is that, in some cases, chil-
dren may succeed on the tests without actually understanding the cardinal principle. Instead, they
may simply be demonstrating “last word” responses, indicating that they have learned that the ap-
propriate response to questions about numerosity is always the last word in the count (e.g., Bermejo,
Morales, & Garcia deOsuna, 2004). Despite such concerns, data from these tasks suggest that under-
standing of cardinality improves with age and that performance is influenced by both problem context
and set size.

Procedure assessment
Almost 40% of the sources (n = 12) included a task that required children to decide whether a count-

ing procedure enacted by the experimenter was correct or incorrect. Importantly, most included not
only correct and incorrect counts but also included “correct-but-unusual” or “pseudoerror” counts.
These counts are technically correct, but do not follow a typical counting pattern (e.g., starting with
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the middle object of an array). Even fairly young children are generally very good at stating which
counts are correct, but appropriately assessing incorrect and correct-but-unusual counts is harder.

Give a number
Almost 40% of the sources (n = 12) included a task in which children were asked to give the ex-

perimenter a certain subset of objects chosen from a larger set. For example, a participant might be
given 15 objects and then be asked to give the experimenter six of them. Performance on these tasks
is typically measured in one of two ways. The first way simply tallies success on each trial. The second
way involves looking at the behaviors children use to solve the problem: those who count out the
objects are considered to understand the link between counting and cardinal value, whereas those
who simply grab a set of objects are not. As with the how many task, performance on give a number
tasks improves with age and is affected by set size.

Other tasks
Five additional tasks occurred in fewer than 10% of the cardinality sources. Two of these tasks mea-

sured children’s ability to predict the outcome of a specific count procedure; in one task, children simply
predicted what would happen if a certain count sequence were enacted (procedure outcome task), whereas
in the other, children decided whether two different count sequences would have the same result (called
the windows task by the authors, because it involved counting windows; Cowan, Dowker, Christakis,
& Bailey, 1996). An additional prediction task, found in two studies, required participants to use in-
formation about one enumerated set to predict the quantity of a different set (the compare sets task;
Bialystok & Cobb, 1997; Sarnecka & Wright, 2013). In one source, children evaluated a puppet’s state-
ments about the result of a count sequence (called the counterfactual task because it involved rating
some statements that were counterfactual; Freeman, Antonucci, & Lewis, 2000). Finally, two sources
included a task designed to measure children’s belief about numerosity as a defining feature of a set
(called the magic paradigm by Gelman and Gallistel (1978) because it involved surreptitious changes
to arrays as if by “magic”). In the magic paradigm, children decide whether or not a set stays funda-
mentally the same over a variety of changes (e.g., changes in color, numerosity, and so forth).

Linking definitions and measurement of conceptual knowledge

Although a variety of tasks are used to assess children’s conceptual knowledge of the cardinal prin-
ciple, the tasks are fairly similar. Many require participants to utilize their understanding of the counting
procedure to determine the numerosity of a set. Although it may seem problematic that these tasks
do not cleanly separate the procedural and conceptual aspects of cardinality knowledge, the tasks are
actually quite relevant to the definitions of conceptual knowledge provided most frequently in the
counting literature. In particular, the focus on conceptual knowledge as understanding of the prin-
ciples underlying procedures connects well with the tasks used to measure cardinal principle
understanding.

Although the tasks are generally well aligned with the definition of conceptual knowledge as knowl-
edge of principles underlying procedures, different tasks measure slightly different facets of that
understanding. Some tasks – the how many task, for example – require explicit implementation of a
counting procedure, which may lead researchers to underestimate the knowledge of children who have
some conceptual knowledge but who have not yet generated or mastered a correct procedure. Addi-
tionally, although those tasks can demonstrate that children are able to use a procedure that does not
violate the cardinality principle, the tasks do not show that children know why the procedure is ap-
propriate.

The procedure outcome, windows, compare sets, and procedure assessment tasks, on the other hand,
allow for measurement of more implicit knowledge of the principles underlying procedures, since chil-
dren are not required to count objects themselves. The goal of these measures is to disentangle children’s
ability to assess cardinality from their own ability to count. These tasks allow researchers to separate
children’s understanding of the core counting principles from knowledge of the standard counting
procedure. For example, the inclusion of correct-but-unusual counts in the evaluation tasks requires
children to know that a count can be correct even if it does not follow the conventional counting
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procedure. Overall, the tasks used in the cardinality literature appear to measure children’s knowl-
edge of the principles underlying the counting procedure, but the specific aspects of knowledge being
tapped by different tasks vary.

One task, the magic paradigm, in which participants decide whether or not a set stays fundamen-
tally the same over a variety of changes, aligns closely with the notion of conceptual knowledge as
general principle knowledge. This task does not require children to count objects. Instead, it assesses
the importance that children place on cardinal value in contrast to other characteristics of a set, and
it provides information about what children believe to be the most important features of an array.
Success on this task demonstrates that children understand that numerosity is a defining feature of
a set, a general concept that will be useful for later mapping of the count words to specific cardinal
values.

In sum, in the cardinality literature, commonly used conceptual knowledge tasks do map onto the
theoretical definitions provided for conceptual knowledge. Many of the tasks used, however, make it
hard to distinguish conceptual knowledge from superficial procedural knowledge (e.g., last word re-
sponding).

Inversion

The mathematical inversion principle holds that “inverse operations (e.g., addition and subtrac-
tion) involving the same value result in no net change” to the original quantity (i.e., a + b − b = a) (Prather
& Alibali, 2009, p. 236). The inversion principle as it applies to addition and subtraction has received
a great deal of research attention, and recent work has begun to address the principle as it applies to
multiplication and division as well (e.g., Robinson & Dube, 2009a). Understanding the inverse rela-
tionships between operations is considered foundational to deep understanding of each operation on
its own (i.e., one cannot fully understand addition until one understands how it relates to the other
operations) (e.g., Bryant, Christie, & Rendu, 1999). Many researchers view understanding of inver-
sion as an extension of the more general Piagetian notion of reversibility (e.g., Baroody & Lai, 2007).

Defining conceptual knowledge

Researchers who study inversion provided some explanation of the term “conceptual knowledge”
in about one-third of sources (n = 11; see Table 2). The provided definitions, however, tended to be
somewhat vague. Throughout the inversion literature, four of the definition types from the general
review were found: connection knowledge (27% of the given definitions), general principle knowl-
edge (55%), knowledge of principles underlying procedures (36%), and domain structure (18%).

Measuring conceptual knowledge

The inversion literature included only a small number of tasks assessing conceptual knowledge,
with most tasks requiring participants to enact, explain, or evaluate a procedure. Of the four tasks
identified in the inversion literature, only two occurred in more than 10% of the sources.

Inversion problem solving
The most common task for assessing conceptual knowledge of inversion, found in 84% of the sources

(n = 27), was having participants solve inversion problems. Inversion problems follow a format that
allows them to be solved using a shortcut. For example, the inversion problem 8 + 3 − 3 = ? can be solved
in two main ways. A participant can calculate the answer, by first adding together 8 and 3 and then
subtracting 3. Alternatively, a participant could use an “inversion shortcut,” recognizing that no com-
putation is needed because the operations “cancel” one another out. Although this measure may appear
procedural, many researchers contend that conceptual knowledge of the inversion principle directly
underlies use of the shortcut (e.g., Gilmore & Papadatou-Pastou, 2009).

Performance on inversion problems is typically assessed in one of three ways. The first way con-
sists of simply measuring accuracy on inversion problems. The second way involves having participants
solve both inversion problems and standard problems (e.g., 8 + 3 − 2 = ?) and comparing accuracy across
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the two problem types. The third way again involves having participants solve both inversion prob-
lems and standard problems but comparing solution times (as opposed to accuracy) for the two problem
types. The second and third methods rely on the assumption that accuracy will be higher and reac-
tion time lower for inversion problems if one knows and uses the shortcut, since it does not require
slow and potentially error-ridden calculations.

Inversion problems have been used in a variety of contexts (e.g., symbolic, concrete), with differ-
ent pairs of operations (i.e., addition/subtraction, multiplication/division), and across different ages.
Estimates of understanding vary depending on the specific form of the task used (e.g., Prather & Alibali,
2009).

Procedure assessment
In this task, participants are asked to observe two different methods for solving an inversion problem:

full computation and the inversion shortcut. Participants are then asked to decide whether each pro-
cedure is acceptable, which procedure is best, and, in some cases, to explain their reasoning. Found
in four sources, this task allows participants to demonstrate some understanding of the inversion short-
cut before they begin to use it themselves (e.g., Robinson & Dube, 2009c). Some participants are able
to clearly explain why one procedure is better, and other participants show a strong preference without
being able to explain why (e.g., Robinson & Dube, 2009a). Thus, there is variability, not only in par-
ticipants’ preference for certain procedures, but also in their abilities to explicitly justify their preferences.

Other tasks
Two additional measures of conceptual knowledge were found in the inversion literature, but in

fewer than 10% or in an unspecified number of the reviewed sources. One source included a violation
of expectation paradigm in which participants were shown transformations of sets of physical objects
and asked whether the resulting array was “normal” or not (Vilette, 2002). In other sources, partici-
pants were required to provide an explanation of their method for solving inversion problems. The
frequency of this task is unclear, however, as many studies made mention of asking participants such
questions but did not report any data from the responses.

Linking definitions and measurement of conceptual knowledge

Research on conceptual knowledge of inversion relies on a fairly small set of measures, allowing
for easier comparison across studies than is possible in many mathematical domains. This has allowed
researchers to draw a clear picture of development over time and across problem-solving contexts.

Most of the tasks used align clearly with the idea of conceptual knowledge as understanding of
the principles underlying procedures. In fact, all but one of the tasks (the violation of expectation par-
adigm) assess participants’ abilities to use, explain, or evaluate a procedure related to the inversion
principle. However, despite the clear relationship between the definition and the tasks, only five of
the sources actually provided this type of definition for conceptual knowledge. Additionally, these mea-
sures can be problematic because it is possible to use a procedure without understanding its conceptual
basis, or to have some conceptual knowledge but not yet have generated a procedure based on it (Bisanz
& LeFevre, 1992). Studies that ask participants to provide verbal justifications for their procedures or
evaluations appear to avoid this issue, but such measures were rare in this literature, and they may
also underestimate participants’ implicit conceptual knowledge.

It could be argued that the inversion problem solving and procedure assessment tasks also align with
two other definitions of conceptual knowledge. Specifically, understanding of the inversion shortcut
might imply understanding of the relationship between operations, demonstrating both connection
knowledge and understanding of domain structure. The link between the tasks and these defini-
tions, however, is less direct, and it was not explicitly made by the researchers. Indeed, since one basic
tenet of the inversion principle is that there is an inverse relationship between operations, all of the
tasks end up providing some measure of conceptual knowledge as connection knowledge. This appears
to be a characteristic of the domain, and is not necessarily based on theoretical notions of conceptu-
al knowledge.
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The violation of expectation paradigm does not strongly align with any of the definitions of con-
ceptual knowledge found in the inversion literature, although a case could be made for its connection
to any of those definitions. Children’s ability to successfully assess an inverse transformation could
be seen as an early form of understanding the connections between operations or as evidence for knowl-
edge of the general principle of inversion. This task is also one of the few inversion tasks that provides
a measure of implicit conceptual knowledge, in that it does not require participants to complete or
explain any type of calculation.

In sum, although the majority of tasks used in the inversion literature do closely align with at least
one of the theoretical definitions of conceptual knowledge, the specific form that the tasks take makes
it hard to draw a clear line between responses based on conceptual knowledge and those based on
procedural knowledge (e.g., Robinson & Dube, 2009b).

Conceptual knowledge across domains

A review of the literature on equivalence, cardinality, and inversion brings to light a few issues that
cut across domains in research on conceptual knowledge. The first issue is that, despite the fact that
all of the reviewed sources reported being “about” conceptual knowledge, only about 35% of the sources
explicitly defined the term “conceptual knowledge.” The lack of definitions makes it difficult to assess
whether the methods used really tap the intended constructs. Additionally, the three domains dif-
fered in the frequency and clarity with which conceptual knowledge was defined. The cardinality
literature most frequently included definitions, followed by the inversion literature. The definitions
provided in the inversion literature, however, were among the least precise. The equivalence litera-
ture seldom offered explicit definitions, but those that were provided tended to be more descriptive.

The second major issue is that, across the sources that did explicitly define conceptual knowl-
edge, there appeared to be little consensus about what this type of understanding actually entails (see
Table 2). The use of multiple definitions presents a challenge for forming a coherent picture of the
development of mathematical knowledge across content domains. The most commonly used defini-
tions differed by mathematical domain, making it hard to compare across the domains. The definition
used might affect the inferences one makes about how much children know at different points in de-
velopmental time, or about whether particular types of instruction have the intended effects.

For example, there has been much interest in understanding how procedural and conceptual knowl-
edge connect and the order in which they develop (e.g., Ohlsson & Rees, 1991; Rittle-Johnson & Siegler,
1998). Results are mixed, however, partially due to lack of a clear definition of conceptual knowl-
edge. This does not imply that using a standardized definition of conceptual knowledge would lead
to a unified conclusion about the developmental time course of mathematical knowledge. It would,
however, allow us to rule out simple differences in definitions as a possible reason for differences across
domains and to focus on more important factors (e.g., amount of exposure to different domains; see
Rittle-Johnson & Siegler, 1998).

There are at least two possible explanations for the plethora of definitions. First, researchers may
not have clearly defined notions of the theoretical construct “conceptual knowledge.” Alternatively,
or in addition, the variety of definitions may reflect the existence of multiple facets of conceptual knowl-
edge. The current review points toward a mixture of both accounts. Some sources do present clearly
articulated explanations of conceptual knowledge; others simply imply that there is mathematical knowl-
edge that is separate from procedures and that this type of knowledge is important, but do not specify
what that knowledge actually is.

One piece of evidence for researchers’ lack of clarity about conceptual knowledge as a theoretical
construct comes from the third issue identified in this review: the frequent incongruity between the
definitions offered and the tasks used to measure conceptual knowledge. The domains differ in the
degree of alignment between definitions and tasks. The cardinality literature, for example, demon-
strated fairly good alignment between theory and measurement. Research on equivalence, however,
employed a great variety of tasks, very few of which clearly mapped onto definitions, when they were
provided. Indeed, in each of the domains, there were a number of sources in which the measure-
ments and definitions did not align. In fact, the current review probably overestimates the amount of
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alignment between definition and measurement, as definitions and tasks were aggregated across sources
for discussion purposes.

It does appear, however, that the second possibility raised above also holds some merit: the tasks
and definitions that did align were not all centered on a single notion of conceptual knowledge. This
suggests that, in order to adequately characterize conceptual knowledge, it may be best to think about
it as having multiple facets. Moreover, these distinct facets may be differentially important across math-
ematical domains. In order to assess this second possibility, it is helpful to compare the definitions
and tasks used in each of the three reviewed domains.

Defining conceptual knowledge

Despite a general lack of consensus regarding the definition of conceptual knowledge, a compar-
ison of the three reviewed domains illustrates the similarities and differences among the literatures.

Definitions found in all three of the reviewed domains

General principle knowledge
The idea of conceptual knowledge as general principle knowledge was explicitly stated in 21% of

the sources (n = 22) across domains, and it occurred in at least six sources in each domain. This was
the only definition type present in all three domains, suggesting that it may represent a central facet
of conceptual knowledge. It appears to align clearly with many specific concepts of interest in the re-
viewed domains (e.g., the cardinality principle, the inversion principle). One issue with this type of
definition is that researchers rarely (and in some domains, never) defined the general term “princi-
ple.” Most did, however, provide an explanation of the specific principle of interest.

Definitions found in two of the reviewed domains

Knowledge of principles underlying procedures
This definition type, found in 23% (n = 7) of the cardinality sources and 13% (n = 4) of the inver-

sion sources, defined conceptual knowledge as an understanding of the conceptual basis for a procedure
or for steps in a procedure. Although this definition might be criticized as blurring the line between
procedural and conceptual knowledge, its frequency across the literature and its clear alignment with
many of the tasks suggest that it may represent another central facet of conceptual knowledge.

Connection knowledge
Conceptual knowledge as knowledge of relationships was found in 9% of the sources (n = 3) on in-

version and 20% of the sources on equivalence (n = 8). The majority of these definitions were general
statements about the importance of links between pieces of knowledge or concepts within a domain.
One possible explanation for the imprecision of these definitions is that many were based on theo-
retical articles that did not focus on specific mathematical domains (e.g., Hiebert & Lefevre, 1986).
Although unoperationalized definitions may be useful in considering mathematical cognition at a general
level, they are less useful in work on mathematical thinking and development within specific domains.
Despite not occurring in all the domains, the connection knowledge definition was among the most
common, both in the general review and in the equivalence literature.

Some researchers have argued that well-connected knowledge is not indicative of the type of knowl-
edge (e.g., conceptual versus procedural), but rather is an index of knowledge quality (Star, 2005). This
seems reasonable in light of the fact that some elements of conceptual knowledge may exist as iso-
lated pieces of knowledge. For example, asking a child to define the equal sign may reveal that the
child knows the definition, but it does not show that the child’s understanding of the symbol is well
connected to other concepts.

Connection knowledge is a very broad notion, encompassing knowledge of a wide range of types
of relationships, for example, among elements of domain structure, among category members, between
symbols and their meanings, and so forth. As such, the construct of connection knowledge is poten-
tially too broad to be theoretically useful as a specific form of conceptual knowledge on its own. However,
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as Star (2005) suggests, it may be productive to view connections as a way of indexing depth of un-
derstanding.

Definitions found in one of the reviewed domains

Domain structure
Two sources in the inversion literature defined conceptual knowledge as understanding of the struc-

ture of mathematics (Canobi, 2009; Robinson & Dube, 2009a). These definitions did not specify what
aspects of structure were of interest, although in the domain of inversion, structural relationships among
operations are presumably the most important. In addition, these definitions were not well con-
nected to the specific tasks used to assess inversion understanding.

Symbol knowledge
Conceptual knowledge was defined as symbol knowledge in one equivalence article (Saenz-Ludlow

& Walgamuth, 1998). Despite its infrequency, this definition aligned closely with one of the specific
concepts discussed more broadly in the equivalence literature, relational understanding of the equal
sign.

Category knowledge
One equivalence article mentioned the idea of category knowledge as a type of conceptual knowl-

edge (DeCaro & Rittle-Johnson, 2012). Additionally, at least one of the tasks used in the equivalence
domain (the symbol sort task) could be viewed as aligning with this definition, although it was not
presented as such by the authors.

Measuring conceptual knowledge

In contrast to the limited number of definitions, there was no shortage of tasks assessing concep-
tual knowledge. In fact, across the three domains, researchers used 24 distinct types of tasks, and there
were many minor variations, making the actual variety even greater.

There were substantial differences in the approach taken to measuring conceptual knowledge across
studies and across domains, although the basis for these differences was not always clear. For example,
some studies relied on one or more explicitly labeled “conceptual” measures that were analyzed sep-
arately from “procedural” measures (e.g., McNeil & Alibali, 2000). Others relied on characterizing the
specific procedures used in a task to infer conceptual knowledge, as opposed to labeling the task itself
as “conceptual” (e.g., Dube & Robinson, 2010a). This approach has been supported by researchers who
have argued that tasks themselves are not procedural or conceptual in nature, but rather that the pro-
cedures used by participants to complete the tasks indicate which type of knowledge they are using
(e.g., Faulkenberry, 2013). Finally, a few studies relied on patterns of performance across tasks to assess
conceptual knowledge (e.g., Rittle-Johnson et al., 2011). It has been suggested that conceptual knowl-
edge can only be inferred based on patterns of behavior across a variety of tasks, and not simply through
the use of a single “conceptual” task (e.g., Bisanz, Watchorn, Piatt, & Sherman, 2009). Although each
of these approaches was used in some sources, the choice of approach was rarely discussed, and it
was even more rarely discussed how the chosen approach provides an adequate measure of concep-
tual knowledge. Thus it appears that some of the difficulty stems from trouble conceptualizing
mathematical knowledge, and some from trouble measuring conceptual knowledge in a theoretical-
ly grounded way.

To characterize current practices in measuring conceptual knowledge, we classified tasks into a
small set of categories (see Table 3), using a classification scheme based on others used in the math-
ematics cognition literature (e.g., Bisanz & LeFevre, 1992; Prather & Alibali, 2009). The categories we
identified were (1) application and justification of procedures, (2) evaluation of procedures, (3) eval-
uation of examples, and (4) explanation of concepts. The classification of tasks into categories was
based on the primary performance requirements of each task.
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Application and justification of procedures
In the first category of tasks, participants enact a procedure or solve a problem. In some cases, par-

ticipants also justify or explain the procedure they use. In the cardinality literature, the how many and
give a number tasks fall into this category. Both tasks require children to count sets in order to arrive
at a solution. In the inversion literature, the inversion problem and procedure justification tasks fall into
this category. These tasks require participants to solve problems or to provide verbal explanations of
their own problem-solving procedures. In the equivalence literature, participants solve equivalence
problems and explain how they obtained their solutions in most studies, and data from problem so-
lutions and explanations have been taken as evidence of conceptual knowledge in a few cases (e.g.,
Capraro, Capraro, Ding, & Li, 2007). Most researchers in the domain of equivalence, however, label these
tasks as procedural, although they are similar to tasks used to measure conceptual knowledge in other
domains. Additionally, equivalent equations tasks could be seen as falling into this category; in these
tasks, participants solve problems that require understanding of equivalence for success.

Despite some disagreement across domains about whether or not these tasks are conceptual in
nature, they are among the most widely used tasks for measuring conceptual knowledge. These tasks
rely on inferring knowledge based on the procedure a participant has selected to complete the task
(e.g., Faulkenberry, 2013); thus, these tasks align with the idea that, although a task itself may not
tap conceptual knowledge, a procedure can do so. Additionally, these tasks allow for the measure-
ment of explicit conceptual knowledge, as they require participants to actively solve or explain problems.

Evaluation of procedures tasks
In a second category of tasks, occurring in all three domains, participants evaluate or rate a pro-

cedure or the outcome of a procedure. The equivalence literature includes one such task: the procedure
assessment task, in which participants assess the validity of different problem solving procedures. In
the cardinality literature, the procedure outcome, windows, compare sets, counterfactual, and procedure
assessment tasks all fall into this category. In the procedure outcome, windows, and counterfactual tasks,
children evaluate the outcome of a counting procedure, whereas in the procedure evaluation task chil-
dren evaluate the procedure itself. The inversion literature also includes a procedure assessment task
in which participants appraise the validity of multiple procedures and select which procedures are
best. The violation of expectation paradigm also falls into this category, as it requires participants to
evaluate the “normality” of transformations.

Note that, in evaluation of procedures tasks, participants may draw on aspects of conceptual knowl-
edge that they are unable to enact or use in their own problem solving. Thus, tasks that require
participants to evaluate procedures may tap implicit conceptual knowledge.

Evaluation of examples tasks
In a third category of tasks, occurring in the equivalence and cardinality literatures, participants

evaluate, rate, or identify examples relevant to a target concept. Three tasks in the equivalence liter-
ature fall into this category. In the sample equation task, participants evaluate whether sample equations
of varying formats “make sense” or not. In the number equality task, participants identify equivalent

Table 3
Summary of types of measures of conceptual knowledge.

Task type Explanation Example task

Application of Procedures Participant enacts a procedure. May also
include a justification of that procedure.

Inversion problems (e.g., Robinson & Dube,
2009c)

Evaluation of Procedures Participant provides an explanation or rating
of a procedure.

Windows task (Cowan et al., 1996)

Evaluation of Examples Participant provides an explanation or rating
of an example.

Number equality task (Rittle-Johnson & Alibali,
1999)

Explanation of Concepts Participant provides an explicit statement or
explanation of a concept.

Equal sign definition (e.g., McNeil et al., 2006)

Miscellaneous Varied Violation of expectation paradigm (Vilette,
2002)
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numbers from sets of possible pairs. In the equal sign definition rating task, participants rate the “smart-
ness” of various definitions of the equal sign. Specific patterns of ratings (e.g., relational definitions
rated more highly than operational definitions) are taken as evidence of conceptual knowledge. In ad-
dition, one task in the cardinality literature, the magic paradigm, falls into this category. In the magic
paradigm, children evaluate whether an array of objects stays fundamentally the same as it under-
goes changes in some of its features (e.g., numerosity, color).

Like evaluation of procedures tasks, tasks that require participants to recognize or evaluate ex-
amples may tap implicit forms of conceptual knowledge. Participants who are not able to generate
correct examples or definitions may nevertheless be able to identify them.

Explanation of concepts tasks
In the fourth category of tasks, participants provide explicit explanations or definitions of con-

cepts (similar to the category of explicit recognition tasks identified by Prather & Alibali, 2009). Equivalence
was the only domain in which such tasks were included as measures of conceptual knowledge, and
there were two such tasks. In the equal sign definition task, participants explain what the equal sign
means, and in the generic equal definition task, participants explain what it means for two sets to be
equal. Note that tasks in which participants must provide explanations require explicit, verbalizable
knowledge about the relevant concepts.

Tasks of this sort were not used consistently across domains. In fact, there were no measures of
this type in the domains of cardinality or inversion. However, some relevant qualitative data were men-
tioned for cardinality. Specifically, some studies reported that children sometimes offered unprompted
explanations for their answers on various cardinality tasks (e.g., Gelman & Meck, 1983).

Miscellaneous tasks
Within the equivalence literature, there were a number of tasks that do not fit into any of the above

categories. This is not surprising, as the number of tasks in the equivalence domain greatly outnum-
bered those in the other two reviewed domains; there were 12 tasks explicitly labeled as conceptual
in the equivalence literature, compared with eight tasks in the cardinality literature, and four in the
inversion literature. The problem reconstruction, problem recognition, and identifying sides tasks, for
example, are included in many studies and measure the ability to represent problems correctly.

The symbol sort task, in which participants group mathematical symbols and numbers, stands alone
among the reviewed tasks in tapping implicit knowledge of symbols, as well as knowledge about con-
nections between symbols and the categories to which those symbols belong. This task also does not
fit cleanly into one of the categories described above.

Measuring conceptual knowledge: summary
The lack of coherent and specific definitions of conceptual knowledge presents a challenge for re-

searchers seeking to measure it. However, difficulty knowing exactly how to measure conceptual
knowledge has not stopped researchers from trying, leading to a wide range of tasks. Not only do the
tasks differ in their details, but they also differ in what they require of participants. Some tasks, for
example, require participants to give explicit verbal statements, whereas other tasks involve ratings
or recognition. As a result, different studies measure different forms of conceptual knowledge (e.g.,
Greeno, 1993). Since researchers use widely varying measures to quantify conceptual knowledge, it
is difficult to integrate empirical findings, both within and across domains.

The factors that lead researchers to choose one task or another are not always explicitly stated. In
some instances, the choice of tasks appears to be based on characteristics of the participant sample,
such as the age of the participants. Thus, some task choices are dictated by the behaviors that are typical
or possible in certain age groups. Young children, for example, are unable to perform many of the tasks
that adults can. This is generally unproblematic, as researchers investigating conceptual knowledge
seldom directly compare performance between widely disparate age groups.

In other cases, however, the choice of tasks seems not to be based on any clear practical concerns.
In the equivalence literature, for example, there seems to be a consensus that the definition of the
equal sign is an important concept. The measurement of the concept varies, however, between re-
quiring participants to generate explicit verbal definitions and requiring them simply to rate given
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definitions. The age range in which equivalence is studied is relatively small (compared with inver-
sion, for example) and it is not always clear why one task is chosen over the other. The variability in
choice of tasks makes it difficult to compare performance across studies, despite the similarity of the
participant populations.

Additionally, for many of the tasks, it is not clear how the measures derived from the tasks align
with theoretical definitions of the nature of conceptual knowledge. Some of the tasks focus on the
use and understanding of procedures, such as tasks that require applying, justifying, or evaluating al-
ternative procedures. Other tasks focus on the concepts themselves, such as tasks that involve explaining
concepts or definitions, and tasks that involve evaluating examples of concepts. In the following sec-
tions, we build on this distinction to propose a framework that we believe will prove useful in integrating
theory and measurement.

Integrating theory and measurement: a framework

An increased focus on defining and measuring conceptual knowledge consistently, both within and
across mathematical domains, might foster a deeper, more integrated understanding of conceptual
knowledge at a general level. A first step in this direction would be increased consistency and im-
proved theoretical grounding in measuring conceptual knowledge. Of course, some variation in
measurement techniques is inevitable due to the different specific concepts being measured and the
different participant populations and age groups that are typical in each domain. Moreover, we rec-
ognize that, in some cases, lack of precision in measuring conceptual knowledge may be due to the
challenges associated with distinguishing conceptual from procedural knowledge, rather than from
inattention to these measurement issues. Nevertheless, we believe that it would be possible to measure
conceptual knowledge more consistently than is the case at present. By carefully considering the goals,
theoretical bases, and task demands for each task, researchers may be able to avoid mixed results that
may cloud or obscure the “bigger picture.”

A second step would be to utilize a common framework based on the definitions and measures
identified in this review. We propose that many of the general and specific concepts of interest can
be subsumed under the two types of conceptual knowledge that are relevant across mathematical
domains: general principle knowledge and knowledge of principles underlying procedures. General prin-
ciples can be defined as “fundamental laws or regularities that apply within a problem domain” (Prather
& Alibali, 2009, p. 222). Thus, this proposed framework divides conceptual knowledge into principle
knowledge of two types: general and procedure-specific. This framework incorporates many of the
constructs that are consistently considered key components of conceptual knowledge, while exclud-
ing those about which there is less agreement (e.g., problem representation).

General principle knowledge

General principles can be known without relation to specific procedures. They include things like
rules (e.g., “the final number in a count sequence represents the set’s total numerosity”), definitions
(e.g., the equal sign means “the same as”), and aspects of domain structure (e.g., addition and sub-
traction are inverse operations). This category incorporates several of the definitions of conceptual
knowledge that are currently used in the literature, including knowledge of domain structure and symbol
knowledge. Because we define principles as including “regularities” within domains, knowledge of
domain structure fits naturally in this category. Symbol meanings are also regularities that are not
specific to a particular procedure. For example, the equal sign always represents an equivalence re-
lation.

In some cases, understanding general principles requires or implies knowledge of connections. For
example, understanding the inversion principle requires understanding how inverse operations relate
to one another. Finally, general principles may also underlie category knowledge. For example, knowing
that the equal sign “belongs” in a category with the greater-than and less-than symbols requires un-
derstanding the general principle that mathematical statements express relations between quantities.
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Tasks for measuring general principle knowledge

Several tasks already in use lend themselves well to the assessment of general principle knowl-
edge, as defined above. Here, we discuss how currently used tasks can measure general principle
knowledge.

Explanation of concepts tasks
Tasks that require verbal explanations can be used to assess explicit knowledge of general prin-

ciples. Although most current implementations of such tasks ask participants to provide definitions
only for symbols, it would also be possible to have participants provide verbal explanations of ele-
ments of domain structure (e.g., what does it mean for one operation to be the inverse of another
operation?) or rules (e.g., why do we use the last number in the count sequence to name a set?). Due
to the high performance demands of explanation tasks, they are best suited for use with older chil-
dren and adults. Using such tasks across ages can provide information about the emergence of explicit
general principle knowledge.

Evaluation of examples tasks
Tasks that require participants to recognize examples, definitions, or statements of principles can

also be used to assess knowledge of general principles. Such tasks may tap more implicit forms of
general principle knowledge, and they may also be suitable for younger children. In the equivalence
literature, for example, the equal sign definition rating task taps participants’ general understanding
of the meaning of the equal sign, without requiring them to generate a definition. In the cardinality
literature, the magic paradigm assesses general understanding of the importance of numerosity in char-
acterizing a set, which is important for the development of full cardinality understanding. Evaluation
of examples tasks may allow for early detection of conceptual knowledge, because their perfor-
mance demands are low, relative to explanation tasks.

Knowledge of principles underlying procedures

In contrast to general principles, principles underlying procedures capture the why of problem solving
– in particular, knowing why certain procedures work for certain problems and knowing the purpose
of each step in a procedure. This type of conceptual knowledge maps well onto current curricular stan-
dards, which state that it is not enough for students to simply be able to solve problems; they must
also have conceptual knowledge of the problem-solving process (e.g., National Governors Association
Center for Best Practices & Council of Chief State School Officers, 2010).

Two other definitions of conceptual knowledge are also relevant to knowledge of principles un-
derlying procedures. First, conceptual knowledge as connection knowledge is relevant to knowledge
of principles underlying procedures, in the sense that there are connections among the steps in a pro-
cedure and between individual steps and their specific conceptual underpinnings. For example,
understanding the conceptual basis for the inversion shortcut requires connecting knowledge of the
inversion principle to knowledge of a specific problem-solving procedure. The idea of conceptual knowl-
edge as category knowledge can also be tied in, since correctly identifying a mathematics problem
as belonging to a specific problem category has implications for selecting applicable procedures. For
example, in order to utilize the inversion shortcut, one must first identify a problem as belonging to
the category of problems for which the shortcut is appropriate (i.e., inversion problems).

Tasks for measuring knowledge of principles underlying procedures

Knowledge of principles underlying procedures can be assessed with two types of tasks that are
already widely used by researchers.

Application and justification of procedures tasks
Requiring participants to solve problems is one way to assess their knowledge of principles un-

derlying procedures. The way in which participants’ procedures align (or do not align) with principles
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within a domain provides insight into their knowledge of those principles (e.g., Dixon & Moore, 1996).
Although the specific data gathered from such tasks may vary (e.g., reaction time, use of a specific
procedure), procedure-based measures are fairly straightforward in many mathematical domains.
However, since there remains the possibility that participants could succeed on application of pro-
cedures tasks due simply to memorization of a correct procedure, such tasks should be used in
conjunction with other, non-procedure-based tasks to provide a more comprehensive knowledge
assessment.

Evaluation of procedures tasks
A second type of task that can be used to tap understanding of principles underlying procedures

is having participants evaluate specific procedures. By asking participants to evaluate both correct and
incorrect procedures, researchers can measure their abilities, not only to judge that certain proce-
dures are appropriate in certain situations, but also to judge that other procedures are not. Thus, such
tasks allow for assessing conceptual knowledge as distinct from the ability to enact procedures them-
selves.

Evaluation of procedures tasks can lead participants to consider procedures that they have not gen-
erated on their own. In the cardinality literature, for example, having children evaluate correct-but-
unusual counts can distinguish those children who understand the conceptual basis for counting from
those who have simply memorized the conventional count sequence. Such tasks can also be used to
elicit justifications, for example, about why a solver might have taken a particular step in solving a
problem, or about why a particular procedure is correct or incorrect.

Implementing change

The proposed framework for thinking about conceptual knowledge suggests specific steps that could
be taken in future research that would lead to more systematic treatment of conceptual knowledge
across mathematical domains. Some of these steps are general recommendations for research on con-
ceptual knowledge; others are recommendations that apply in the specific subdomains that we have
reviewed.

General recommendations for research on conceptual knowledge

At the broadest level, we encourage researchers to evaluate the current “state of the art” in think-
ing about and measuring conceptual knowledge in their particular area of expertise, and to situate
their work on conceptual knowledge within the more general literature on this topic. This step would
foster researchers’ making connections across subdomains, which may be beneficial for the field at
large, as it may spark exchanges and progress on issues of measurement, theory, and practical appli-
cation.

Second, we encourage researchers to provide explicit definitions of conceptual knowledge, and to
use tasks that align well with the chosen definitions. Care should be taken to consider the range of
possible ways in which participants can solve or respond to specific tasks (see Faulkenberry, 2013),
so as to insure – or at least increase the likelihood – that tasks intended to tap specific facets of con-
ceptual knowledge actually do so. A focus on strategic aspects of behavior to infer knowledge may
lead to more accurate assessments than a simple focus on scores on “conceptual” tasks.

Third, we encourage researchers to explicitly consider the specific principles that are relevant within
each mathematical domain, as doing so may guide research in fruitful ways. As one example,
Rittle-Johnson and Alibali (1999) distinguished between understanding the meaning of equal quan-
tities and understanding the meaning of the equal sign symbol, and they selected or developed tasks
to measure each of these concepts separately. Although some studies do attempt to identify and measure
knowledge of specific principles or concepts (e.g., Rittle-Johnson et al., 2011), we believe it would be
beneficial for the field if researchers would do so more systematically.

Fourth, we encourage researchers to use multiple tasks when assessing conceptual knowledge. In
many cases, conceptual knowledge may be best “diagnosed” using a battery or set of tasks, rather than
a single task (e.g., Bisanz et al., 2009). Using a set of tasks would allow for assessment of different
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forms of conceptual knowledge (i.e., explicit and implicit knowledge) and for characterization of pat-
terns of behavior that might indicate conceptual knowledge. Additionally, if a larger set of tasks were
used in each study, there would be more room for direct comparison across studies. At present, it is
often hard to compare performance across studies because each uses a different task to assess con-
ceptual knowledge.

Fifth (and related to the previous points), we encourage researchers to utilize tasks that are spe-
cifically designed to tap each of the two forms of conceptual knowledge that we have identified: general
principles and principles that underlie procedures. To do so effectively, researchers will need to ex-
plicitly identify the relevant principles (both general and procedure-specific) in their domain of study.

Finally, we encourage researchers to test specific predictions derived from our framework. Specif-
ically, we encourage researchers to measure general principle knowledge and knowledge of principles
underlying procedures separately, and then to use confirmatory factor analysis to test whether the
data have a two-factor structure. On this point, however, we believe some notes of caution are in order.
We expect that the two-factor structure will be readily observed only when knowledge of the prin-
ciples underlying procedures is tested for procedures that are not transparently related to general domain
principles. In the domain of equivalence, for example, it may be difficult to empirically distinguish
knowledge of the meaning of the equal sign (i.e., a general principle) from knowledge of the prin-
ciples underlying steps in the “make both sides equal” procedure (i.e., principles underlying procedures).
It may be more straightforward to empirically distinguish knowledge of the meaning of the equal sign
from knowledge of principles underlying steps in the “add–subtract” procedure (for a problem such
as 3 + 6 = 5 + __, add the numbers on the left side of the equation and then subtract the number on
right side), because the relation between the general principle and the add–subtract procedure is less
direct.

Recommendations for research within the domains reviewed

Our framework suggests additional recommendations for research within each of the three domains
reviewed in this paper. The reviewed domains displayed a variety of issues, leading to different rec-
ommendations in each area. Some suggestions are briefly outlined below, to serve as examples of
potential directions for future research.

Equivalence
The literature on equivalence left the most to be desired in terms of linking definitions of concep-

tual knowledge to specific tasks. Therefore, one recommendation for this domain would be for researchers
to focus on theoretically grounded measurement of conceptual knowledge. There has been a recent
push in this area toward creating reliable and valid measurement instruments, leading to a rapid in-
crease in the number of tasks being used to assess both conceptual and procedural knowledge (e.g.,
Rittle-Johnson et al., 2011). These efforts are a clear step in a positive direction, and they align well
with the idea that assessing patterns of behavior over a variety of tasks may provide a better char-
acterization of conceptual knowledge. In the future, it will be important to tie these carefully constructed
measures to a more specific conceptualization of conceptual knowledge. Additionally, discussion of
how the results from the battery of assessments provide insight into conceptual knowledge would
be valuable.

A second recommendation is that researchers in the domain of equivalence should consider using
data from application of procedures measures as evidence for conceptual knowledge, as is done in
other domains. As mentioned previously, a majority of studies on equivalence require participants to
solve problems and to provide procedural justifications. Many of these justifications include concep-
tual content and, moreover, the actual procedures used could be evaluated as being in line with domain
principles or not, as is done in other domains. As noted by Faulkenberry (2013), these types of as-
sessments might provide a particularly valuable picture of conceptual knowledge that does not rely
on the specifics of the task, per se.

In this vein, the notion of a “shortcut” procedure as evidence for conceptual knowledge could be
extended to the equivalence domain. Some equivalence problems lend themselves to being solved with
a “shortcut” grouping procedure that reduces the need for computation (similar to use of the inver-
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sion shortcut on inversion problems). On problems where an addend is repeated on both sides of the
equation (e.g., 3 + 4 + 5 = 3 + _), the grouping procedure takes advantage of the fact that some ele-
ments on each side are already equal (i.e., the 3s) and thus the solution can be reached by simply adding
the other numbers (i.e., the 4 and 5). Recently collected data suggests that a majority of adult problem
solvers utilize a grouping procedure on repeated-addend equivalence problems (Crooks & Alibali, 2013),
much in the way that a majority of adults use the inversion shortcut on inversion problems. By rec-
ognizing that procedure-based tasks can tap aspects of conceptual knowledge, researchers in the
equivalence domain could measure conceptual knowledge in a way that aligns with a common ap-
proach in other domains.

Cardinality
Of the three reviewed domains, cardinality demonstrated the best alignment between definitions

and tasks. Few tasks within the cardinality literature assessed general principle knowledge, however,
making it difficult to disentangle children’s conceptual and procedural knowledge. Although com-
pletely separating conceptual and procedural knowledge may be impossible, it would be valuable to
assess conceptual knowledge using tasks that cannot be solved with a simple procedural rule (i.e.,
last word responding; Bermejo et al., 2004). Although it may not be possible to cleanly separate con-
ceptual and procedural knowledge in early counting, it seems prudent to use tasks that could at least
differentiate last word responding from procedures with a stronger conceptual underpinning.

Future research could also include a wider variety of tasks, particularly tasks that allow children
to demonstrate more general knowledge of the cardinality principle. Tasks that require children to
provide explanations of outcomes, for example, have been used qualitatively in the counting litera-
ture (e.g., Gelman & Gallistel, 1978), but could also provide interesting quantitative data about the
frequency with which children explicitly mention principles and how this tendency changes over de-
velopment.

Inversion
The primary difficulty in the inversion literature was the absence of precise definitions of concep-

tual knowledge. In particular, there was a tendency to explain conceptual knowledge as understanding
of principles, but then not define the term “principle.” A general recommendation in this domain would
be for researchers to more clearly define conceptual knowledge.

A second suggestion would be for researchers in this domain to utilize a wider range of tasks. Al-
though behavioral measures of inversion problem solving provide important data, they could be
supplemented with information about performance on other types of tasks. For example, one type
of task that has appeared in the inversion literature with greater frequency in recent years is evalu-
ation of procedures tasks. Researchers should continue to include this type of task, as it allows for
assessment of implicit conceptual knowledge in participants who may not have yet developed a con-
ceptually based procedure of their own. Another type of task that could be effectively adapted for use
in this domain is justification of procedures tasks, in which participants are asked to explain why a
certain procedure works or is better than another procedure. Participants could also be asked to explain
the relationships among different operations or to group operations together based on different fea-
tures (e.g., based on inverse relationships, or based on their effects on numerosity).

Conclusion

In the mathematical thinking literature, the term “conceptual knowledge” has come to denote a
wide array of constructs, making it difficult to integrate major findings, to understand the ways in which
conceptual knowledge relates to procedural knowledge, and to evaluate effective ways to use current
research to guide classroom interventions (e.g., Baroody et al., 2007; Star, 2005). In particular, the ways
in which conceptual knowledge has been defined theoretically and the ways in which it has been mea-
sured quantitatively have created a vast literature in which a “bigger picture” is hard to find. The current
review highlights the lack of consistency in research on conceptual knowledge of mathematics. Spe-
cific issues include the fact that explicit definitions of conceptual knowledge are rare, that the given
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definitions are often vague or poorly operationalized, and that the tasks used to measure conceptual
knowledge often fail to align with theoretical claims about the nature of such knowledge.

As one step toward addressing these problems, we have proposed a framework for thinking about
conceptual knowledge that consolidates current notions into two specific types of conceptual knowl-
edge: general principle knowledge and knowledge of principles underlying procedures. General principle
knowledge involves understanding of mathematical ideas without relation to specific problems or pro-
cedures. Knowledge of principles underlying procedures, on the other hand, involves connecting concepts
to specific procedures – for example, knowing why certain procedures work for certain problems or
knowing the purpose of each step in a procedure. We do not claim that this framework will clear the
“wilderness” of understanding mathematical knowledge, but we do believe that it represents a sub-
stantial step forward.

Considering these two types of knowledge could guide future efforts to measure conceptual knowl-
edge across mathematical domains. By thinking about conceptual knowledge across domains in a
consistent way, researchers may gain a clearer picture of how conceptual knowledge develops. Uti-
lizing a common framework will also allow researchers to assess which experimental findings reflect
true similarities or differences across domains and which are artifacts of the fractured state of the field.
In turn, greater knowledge about the development of conceptual knowledge may contribute to gen-
erating and validating new methods for teaching conceptual knowledge in the classroom.
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